4,106 research outputs found

    Deep-Inelastic Onium Scattering

    Full text link
    Using the colour dipole approach of the QCD perturbative (BFKL) Pomeron exchange in onium-onium scattering, we compute the cross section for small but hierarchically different onium sizes. A specific term dependent on the size-ratio is generated. In deep inelastic onium scattering it appears as a scaling violation contribution to the quark structure function near the BFKL singularity. We find that the extension of the formalism for deep inelastic onium scattering to the proton structure function provides a remarkably good 3-parameter fit to HERA data at small x with a simple physical interpretation in terms of the dipole formulation.Comment: 10 pages, 2 Postscript figure

    Emission of gamma rays shifted from resonant absorption by electron-nuclear double transitions in ^{151}Eu^{2+}:CaF_2

    Get PDF
    We show that the emission of a gamma-ray photon by a nucleus can be influenced by a microwave magnetic field acting on the atomic electrons. We study theoretically these electron-nuclear double transitions (ENDTs) for ^{151}Eu nuclei in a CaF_2 lattice at low temperature, in the presence of a static magnetic field and of a microwave magnetic field. The ENDTs acquire a significant intensity for certain resonance frequencies. The ENDTs are of interest for the identification of the position of the lines in complex M\"{o}ssbauer spectra.Comment: 8 pages; 3 Postscript figures: Fig. 1, Fig. 2(a), Fig. 2(b

    Assessing temperature effects on multipole contributions and angular dependence in core-level spectroscopies

    Get PDF
    This study aims at assessing the thermal nuclei motion effects on the multipole transition channels involved in two core-level spectroscopies, x-ray absorption spectroscopy (XAS) and x-ray Raman scattering (XRS). Temperature effects on the 1s -> s monopole, 1s -> p dipole, and 1s -> d quadrupole transitions are investigated using two reference systems for which we present original experimental data: alpha-Al2O3 at the Al K edge probed by XRS at room temperature and rutile TiO2 at the Ti K pre-edge probed by XAS at temperatures ranging from 6 to 700 K. Through the latter, this work enlightens the part of the pre-edge peak enhancement due to temperature in the K pre-edge region of 3d transition metal, which is known to be routinely used to determine the concentration, valence or symmetry of the probed element in a given sample. Nuclear thermal fluctuations are taken into account using a method based on density functional theory that consists in averaging spectra over atomic configurations, generated within the harmonic approximation and obeying quantum statistics at finite temperature. Since only a finite number of such configurations are used, the numerically averaged spectra generally lose the symmetry of the equilibrium crystal positions. In this paper, we demonstrate that the physical average has to be symmetric and propose a method to restore the physical angular dependence of the spectra. The approach is successfully applied to investigate the angular dependent XAS spectra in rutile as a function of temperature. The two systems under study allow to draw general conclusions regarding the effect of nuclear quantum fluctuations on the different transition channels available to both core-level spectroscopies.Peer reviewe

    Magnetization Process of the S=1 and 1/2 Uniform and Distorted Kagome Heisenberg Antiferromagnets

    Get PDF
    The magnetization process of the S=1 and 1/2 kagome Heisenberg antiferromagnet is studied by means of the numerical exact diagonalization method. It is found that the magnetization curve at zero temperature has a plateau at 1/3 of the full magnetization. In the presence of 3×3\sqrt{3} \times \sqrt{3} lattice distortion, this plateau is enhanced and eventually the ferrimagnetic state is realized. There also appear the minor plateaux above the main plateau. The physical origin of these phenomena is discussed.Comment: 5 pages, 10 figures included, to be published in J. Phys. Soc. Jp

    Prospects for Spin Physics at RHIC

    Get PDF
    Colliding beams of 70% polarized protons at up to s\sqrt{s}=500 GeV, with high luminosity, L=2×1032\times10^{{\rm 32}} cm−2^{-2}sec−1^{-1}, will represent a new and unique laboratory for studying the proton. RHIC-Spin will be the first polarized-proton collider and will be capable of copious production of jets, directly produced photons, and WW and ZZ bosons. Features will include direct and precise measurements of the polarization of the gluons and of uˉ\bar{u}, dˉ\bar{d}, uu, and dd quarks in a polarized proton. Parity violation searches for physics beyond the standard model will be competitive with unpolarized searches at the Fermilab Tevatron. Transverse spin will explore transversity for the first time, as well as quark-gluon correlations in the proton. Spin dependence of the total cross section and in the Coulomb nuclear interference region will be measured at collider energies for the first time. These qualitatively new measurements can be expected to deepen our understanding of the structure of matter and of the strong interaction.Comment: 51 pages, 22 figures. Scheduled to appear in the Annual Review of Nuclear and Particle Science Vol. 50, to be published in December 2000 by Annual Reviews, http://AnnualReviews.or

    Multifractal characterization of stochastic resonance

    Full text link
    We use a multifractal formalism to study the effect of stochastic resonance in a noisy bistable system driven by various input signals. To characterize the response of a stochastic bistable system we introduce a new measure based on the calculation of a singularity spectrum for a return time sequence. We use wavelet transform modulus maxima method for the singularity spectrum computations. It is shown that the degree of multifractality defined as a width of singularity spectrum can be successfully used as a measure of complexity both in the case of periodic and aperiodic (stochastic or chaotic) input signals. We show that in the case of periodic driving force singularity spectrum can change its structure qualitatively becoming monofractal in the regime of stochastic synchronization. This fact allows us to consider the degree of multifractality as a new measure of stochastic synchronization also. Moreover, our calculations have shown that the effect of stochastic resonance can be catched by this measure even from a very short return time sequence. We use also the proposed approach to characterize the noise-enhanced dynamics of a coupled stochastic neurons model.Comment: 10 pages, 21 EPS-figures, RevTe

    Exponential renormalization

    Full text link
    Moving beyond the classical additive and multiplicative approaches, we present an "exponential" method for perturbative renormalization. Using Dyson's identity for Green's functions as well as the link between the Faa di Bruno Hopf algebra and the Hopf algebras of Feynman graphs, its relation to the composition of formal power series is analyzed. Eventually, we argue that the new method has several attractive features and encompasses the BPHZ method. The latter can be seen as a special case of the new procedure for renormalization scheme maps with the Rota-Baxter property. To our best knowledge, although very natural from group-theoretical and physical points of view, several ideas introduced in the present paper seem to be new (besides the exponential method, let us mention the notions of counterfactors and of order n bare coupling constants).Comment: revised version; accepted for publication in Annales Henri Poincar
    • 

    corecore